

Malé Declaration 1^{s⊤} emissions inventory workshop AIT, Bangkok, 3rd – 5th July 2006

Part 6 – Compilation of emissions from Agriculture (Sector 8)

Harry Vallack,

Stockholm Environment Institute (SEI)

University of York, UK

Malé Declaration on Control and Prevention of Air Pollution and Its Likely Transboundary Effects for South Asia

Emissions from Agriculture

Several types of agricultural practice emit pollutants relevant to the study of transboundary air pollution. Among these activities are:

- treatment of livestock manures
- application of fertilizers
- burning of agricultural residues

The first two are sources of ammonia (NH_3) emissions; the last one emits a range of air pollutants $(NO_x, SO_x, CO, NMVOCs, NH_3, and particulate matter (PM))$.

Emissions from Agriculture -*Livestock Manure Management*

This covers emissions of ammonia (NH₃) from the storage and disposal of livestock manures for each of 10 categories of livestock.

Emissions are calculated assuming an average nitrogen excretion rate for each category of animal and applying annually averaged emission factors (EFs) for:

Housing management (barns, stalls, stables), and
manure deposited during grazing.

These EFs were derived for developing country regions

Emissions from Agriculture -*Livestock Manure Management*

			Ammonia (NH3) emis					
		В	kg N					
	A	Assumed annual	С	D	D		F	
	Activity rate (thousands of	excretion rate per animal ^b	Housing managemen (in barns/stalls/ stables etc.)	Grazing		Total	NH ₃ emissions (tonnes)	
Animal	animals)	(kg N/yr)	Default		Default	(C+D)	(A x E)	
Dairy cattle ^c		60	17.5		3.6	0	0	
Other cattle ^d		40	4.4		5.5	0	0	
Buffalo ^e		45	5.1		5.5	0	0	
Pigs ^f		14	4.8			0	0	
Sheep ^g		10	0.34		0.87	0	0	
Goats ^h		9	0.34		0.78	0	0	
Horses, mules and asses ^e		45	5.1		5.5	0	0	
Poultry ^f (chickens, ducks, geese etc.)		0.5	0.22			0	0	
Fur animals		4.1	1.69 ⁱ			0	0	
Camels		55	6.1		6.7	0	0	
Other (please specify)						0	0	
Total							0	

After application, some of the N contained in fertilizers is released to the atmosphere as ammonia (NH_3) .

These emissions depend on:

- the type and amount of fertilizer applied
- climate (i.e. mean spring air temperature)
- the types of soils to which each fertilizer is applied (emissions are greater on calcareous soils)

A portion of fertilizer-N is also emitted as NO (assumed 0.7% by default)

Default emission factors in the EMEP/Corinair guidebook (detailed methodology) are presented for three climate categories:

- Region A mean spring air temperature > 13 °C.
- Region B mean spring air temperature > 6 °C but < 13 °C, and
- Region C mean spring air temperature < 6 °C

There is also a *'calcareous soil multiplier'* which should be entered if all the soils are calcareous (or modified according to the percentage calcareous soils using the equation provide at the bottom of the worksheet).

	A Fertilizer use	% of a	applied ferti ammor 100 x NH₂-N	C Calcareous soil multiplier (enter this value if soils are alkaline)			
Fertilizer type	(tonnes N per year)		Region A default ^a	Region B default ^b	Region C default ^c		Default multiplier ^f
Ammonium sulphate			2.5	2	1.5		10
Ammonium nitrate			2	1.5	1		
Calcium ammonium nitrate			2	1.5	1		
Anhydrous ammonia			4	3	2		4
Urea			20	17	15		
Combined ammonium phosphates ^e			2.5	2	1.5		10
Other complex NK, NPK fertilizers			2	1.5	1		
Nitrogen solutions (mixed urea and ammonium nitrate)			11	9	7		
Total	0						

^f Modify the multiplier (M_{new}) according to the percent calacarious soils (C) using using this equation: Mnew = ((C x $M_{default}$) + (100 - C))/100 Thus, for anhydrous ammonia, if only 25% of soils are calcarious, multiplier is reduced from 4 to 1.75.

Activity data – i.e. annual consumption of each type of fertilizer by country - are given in the FAOSTAT database for all years from 1961-2003.

Warning: data presented in the FAOSTAT database as 'Mt' are actually in 'metric tonnes' and *not* megatonnes (1,000,000 tonnes) as normally meant by 'Mt'!

Emissions from Agriculture *burning of agricultural residues*

The steps include:

- Finding activity data (e.g. from FAOSTAT) on the annual production of each crop (in kilotonnes)
- For each crop, estimating the biomass of crop residue actually burned from: crop to residue ratios, dry matter fraction, fraction burned in fields, fraction oxidised,
- Estimating CO emissions from the C fraction emitted as CO;
- Estimating NO_x emissions from the C:N ratio of the crop residues and an NO_x emission ratio (fraction of total N released as NO_x); and
- Estimating emissions of NMVOCs, NH₃ and PM by multiplying the amount of each crop residue burned by emission factors.

Emissions from Agriculture emissions from burning of agricultural wastes

	Crop type										
Parameter	Rice	Wheat	Millet	Soya	Maize	Potatoes	Jute	Cotton	Groundnut	Sugarcane	Rapeseed and mustard
Residue to crop ratio ^a Dry matter fraction ^a Fraction burned in fields ^{b a}	1.4 0.83 0.25	1.5 ^p 0.80° 0.25	1.2 ^p 0.80 ^o 0.25	2.1 0.80 ° 0.25	0.33 ^p 0.4 0.25	0.4 0.45 0.25	2.15 ^p 0.80 ° 0.25	3.0 ^p 0.80 [°] 0.25	2.0 ^p 0.80 ^o 0.25	0.1 ^q 0.80 ° 0.25	1.8 ^q 0.80 ° 0.25
combustion a Carbon fraction of	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
CO emission ratio ca	0.4144	0.4055	0.45	0.45	0.06	0.4220	0.45	0.45	0.45	0.45	0.45
Nitrogen to carbon ratio $^{e a}$ NO _x emission ratio $^{e a}$ NMVOC emission factor	0.014 0.121	0.012 0.121	0.016 0.121	0.05 0.121	0.02 0.121	0.04 0.121	0.015 0.121	0.015 0.121	0.015 0.121	0.015 0.121	0.015 0.121
$(kg/tonnes burned)^{t}$ SO ₂ emission factor	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
(kg/tonnes burned) ¹¹¹ NH ₃ emission factor (kg/tonnes burned) PM ₁₀ /PM _{2.5} emission factor	4 ^g 1.3 ⁿ	5.5 ^h 2.4 ¹	9 1.3 ⁿ	9 1.3 ⁿ	9 1.3 ⁿ	9 1.3 ⁿ	9 1.3 ⁿ	9 1.3 ⁿ	9 1.3 ⁿ	9 1.3 ⁿ	9 1.3 ⁿ
(kg/tonnes burned) ^j	4 ^g	8.5 ^k	4.9 ⁱ	4.9 ⁱ	4.9 ⁱ	4.9 ⁱ	4.9 ⁱ	4.9 ⁱ	4.9 ⁱ	4.9 ⁱ	4.9 ⁱ

HOLM ONMENT

Compilation of emissions for Solvent and other product use (Sector 7) and for Agriculture (Sector 8)

Practical session 7:

- 1. Filling in workbook with dummy data (see practical session 7 notes)
- 2. Plenary session *sharing problems encountered etc.*